skip to main content


Search for: All records

Creators/Authors contains: "Carbone, Mariah S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Long-term soil CO2emission measurements are necessary for detecting trends and interannual variability in the terrestrial carbon cycle. Such records are becoming increasingly valuable as ecosystems experience altered environmental conditions associated with climate change. From 2013 to 2021, we continuously measured soil CO2concentrations in the two dominant high elevation forest types, mixed conifer and aspen, in the upper Colorado River basin. We quantified the soil CO2flux during the summer months, and found that the mean and total CO2flux in both forests was related to the prior winter’s snowfall and current summer’s rainfall, with greater sensitivity to rainfall. We observed a decline in surface soil CO2production, which we attributed to warming and a decrease in amount and frequency of summer rains. Our results demonstrate strong precipitation control on the soil CO2flux in mountainous regions, a finding which has important implications for carbon cycling under future environmental change.

     
    more » « less
  2. ABSTRACT

    We present a timeseries of14CO2for the period 1910–2021 recorded by annual plants collected in the southwestern United States, centered near Flagstaff, Arizona. This timeseries is dominated by five commonly occurring annual plant species in the region, which is considered broadly representative of the southern Colorado Plateau. Most samples (1910–2015) were previously archived herbarium specimens, with additional samples harvested from field experiments in 2015–2021. We used this novel timeseries to develop a smoothed local record with uncertainties for “bomb spike”14C dating of recent terrestrial organic matter. Our results highlight the potential importance of local records, as we document a delayed arrival of the 1963–1964 bomb spike peak, lower values in the 1980s, and elevated values in the last decade in comparison to the most current Northern Hemisphere Zone 2 record. It is impossible to retroactively collect atmospheric samples, but archived annual plants serve as faithful scribes: samples from herbaria around the Earth may be an under-utilized resource to improve understanding of the modern carbon cycle.

     
    more » « less
  3. Abstract

    Radiocarbon (∆14C) measurements of nonstructural carbon enable inference on the age and turnover time of stored photosynthate (e.g., sugars, starch), of which the largest pool in trees resides in the main bole. Because of potential issues with extraction-based methods, we introduce an incubation method to capture the ∆14C of nonstructural carbon via respired CO2. In this study, we compared the ∆14C obtained from these incubations with ∆14C from a well-established extraction method, using increment cores from a mature trembling aspen (Populus tremuloides Michx). To understand any potential ∆14C disagreement, the yields from both methods were also benchmarked against the phenol-sulfuric acid concentration assay. We found incubations captured less than 100% of measured sugar and starch carbon, with recovery ranging from ~ 3% in heartwood to 85% in shallow sapwood. However, extractions universally over-yielded (mean 273 ± 101% expected sugar carbon; as high as 480%), where sugars represented less than half of extracted soluble carbon, indicating very poor specificity. Although the separation of soluble and insoluble nonstructural carbon is ostensibly a strength of extraction-based methods, there was also evidence of poor separation of these two fractions in extractions. The ∆14C of respired CO2 and ∆14C from extractions were similar in the sapwood, whereas extractions resulted in comparatively higher ∆14C (older carbon) in heartwood and bark. Because yield and ∆14C discrepancies were largest in old tissues, incubations may better capture the ∆14C of nonstructural carbon that is actually metabolically available. That is, we suggest extractions include metabolically irrelevant carbon from dead tissues or cells, as well as carbon that is neither sugar nor starch. In contrast, nonstructural carbon captured by extractions must be respired to be measured. We thus suggest incubations of live tissues are a potentially viable, inexpensive and versatile method to study the ∆14C of metabolically relevant (available) nonstructural carbon.

     
    more » « less
  4. Cernusak, Lucas (Ed.)
    Abstract Nonstructural carbohydrates (NSCs) play a critical role in plant physiology and metabolism, yet we know little about their distribution within individual organs such as the stem. This leaves many open questions about whether reserves deep in the stem are metabolically active and available to support functional processes. To gain insight into the availability of reserves, we measured radial patterns of NSCs over the course of a year in the stemwood of temperate trees with contrasting wood anatomy (ring porous vs diffuse porous). In a subset of trees, we estimated the mean age of soluble sugars within and between different organs using the radiocarbon (14C) bomb spike approach. First, we found that NSC concentrations were the highest and most seasonally dynamic in the outermost stemwood segments for both ring-porous and diffuse-porous trees. However, while the seasonal fluctuation of NSCs was dampened in deeper stemwood segments for ring-porous trees, it remained high for diffuse-porous trees. These NSC dynamics align with differences in the proportion of functional sapwood and the arrangement of vessels between ring-porous and diffuse-porous trees. Second, radial patterns of 14C in the stemwood showed that sugars became older when moving toward the pith. The same pattern was found in the coarse roots. Finally, when taken together, our results highlight how the radial distribution and age of NSCs relate to wood anatomy and suggest that while deeper, and likely older, reserves in the stemwood fluctuated across the seasons, the deepest reserves at the center of the stem were not used to support tree metabolism under usual environmental conditions. 
    more » « less
  5. Summary

    Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation.

    We measured NSC age (Δ14C) along with a suite of ecophysiological metrics inPinus edulistrees experiencing either extreme short‐term drought (−90% ambient precipitation plot, 2020–2021) or a decade of severe drought (−45% plot, 2010–2021). We tested the hypothesis that carbon starvation – consumption exceeding synthesis and storage – increases the age of sapwood NSC.

    One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long‐term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (−75%), basal area increment (−39%), and bole respiration rates (−28%).

    Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.

     
    more » « less
  6. Abstract

    Linking biometric measurements of stand‐level biomass growth to tower‐based measurements of carbon uptake—gross primary productivity and net ecosystem productivity—has been the focus of numerous ecosystem‐level studies aimed to better understand the factors regulating carbon allocation to slow‐turnover wood biomass pools. However, few of these studies have investigated the importance of previous year uptake to growth. We tested the relationship between wood biomass increment (WBI) and different temporal periods of carbon uptake from the current and previous years to investigate the potential lagged allocation of fixed carbon to growth among six mature, temperate forests. We found WBI was strongly correlated to carbon uptake across space (i.e., long‐term averages at the different sites) but on annual timescales, WBI was much less related to carbon uptake, suggesting a temporal mismatch between C fixation and allocation to biomass. We detected lags in allocation of the previous year's carbon uptake to WBI at three of the six sites. Sites with higher annual WBI had overall stronger correlations to carbon uptake, with the strongest correlations to carbon uptake from the previous year. Only one site had WBI with strong positive relationships to current year uptake and not the previous year. Forests with low rates of WBI demonstrated weak correlations to carbon uptake from the previous year and stronger relationships to current year climate conditions. Our work shows an important, but not universal, role of lagged allocation of the previous year's carbon uptake to growth in temperate forests.

     
    more » « less
  7. null (Ed.)